Fuzzy clustering with spatial–temporal information
نویسندگان
چکیده
منابع مشابه
Fuzzy C-Means Clustering With Regularization by K-L Information
Gaussian mixture model or Gaussian mixture density model(GMM) uses the likelihood function as a measure of fit. We show that just the same algorithm as the GMM can be derived from a modified objective function of Fuzzy c-Means (FCM) clustering with the regularizer by K-L information, only when the parameter λ equals 2. Although the fixed-point iteration scheme of FCM is similar to that of the G...
متن کاملImage segmentation based on fuzzy clustering with neighborhood information
In this paper, an improved fuzzy c-means (IFCM) clustering algorithm for image segmentation is presented. The originality of this algorithm is based on the fact that the conventional FCM-based algorithm considers no spatial context information, which makes it sensitive to noise. The new algorithm is formulated by incorporating the spatial neighborhood information into the original FCM algorithm...
متن کاملCharacterizing Volunteered Geographic Information using Fuzzy Clustering
This paper demonstrates the use of fuzzy clustering to characterize Volunteered Geographic Information (VGI). We argue that classifying small areas based on variables related to the amount, type, and currency of VGI can provide a more nuanced understanding of the content. We present a classification of 2011 UK Census Output Areas in Leicestershire (UK) based on content of OpenStreetMap, using a...
متن کاملON FUZZY NEIGHBORHOOD BASED CLUSTERING ALGORITHM WITH LOW COMPLEXITY
The main purpose of this paper is to achieve improvement in thespeed of Fuzzy Joint Points (FJP) algorithm. Since FJP approach is a basisfor fuzzy neighborhood based clustering algorithms such as Noise-Robust FJP(NRFJP) and Fuzzy Neighborhood DBSCAN (FN-DBSCAN), improving FJPalgorithm would an important achievement in terms of these FJP-based meth-ods. Although FJP has many advantages such as r...
متن کاملFuzzy local regression models with fuzzy clustering
The TSK model introduced by Takagi Sugeno and Kang TSK fuzzy reasoning is associated with fuzzy rules that have a special format with a func tional type consequent instead of the fuzzy consequent that normally appears in the MamdamiModel In this way the TSK approach tries to decompose the input space into subspaces and then approximate the system in each subspace by a simple linear regression m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Spatial Statistics
سال: 2019
ISSN: 2211-6753
DOI: 10.1016/j.spasta.2019.03.002